A Natural Axiom System for Boolean Algebras with Applications
Autor: | R. E. Hodel |
---|---|
Rok vydání: | 2016 |
Předmět: |
Boolean ring
Computer Science::Computational Complexity Boolean algebras canonically defined Complete Boolean algebra Algebra Boolean prime ideal theorem TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES Interior algebra TheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION Axiom of choice Free Boolean algebra Arithmetic Stone's representation theorem for Boolean algebras Hardware_LOGICDESIGN Mathematics |
Zdroj: | Studies in Universal Logic ISBN: 9783319247540 |
DOI: | 10.1007/978-3-319-24756-4_13 |
Popis: | We use an equivalent form of the Boolean Prime Ideal Theorem to give a proof of the Stone Representation Theorem for Boolean algebras. This proof gives rise to a natural list of axioms for Boolean algebras and also for propositional logic. Applications of the axiom system are also given. |
Databáze: | OpenAIRE |
Externí odkaz: |