Modified inexact Levenberg–Marquardt methods for solving nonlinear least squares problems

Autor: Jen-Chih Yao, Jifeng Bao, Carisa Kwok Wai Yu, Jinhua Wang, Yaohua Hu
Rok vydání: 2019
Předmět:
Zdroj: Computational Optimization and Applications. 74:547-582
ISSN: 1573-2894
0926-6003
DOI: 10.1007/s10589-019-00111-y
Popis: In the present paper, we propose a modified inexact Levenberg–Marquardt method (LMM) and its global version by virtue of Armijo, Wolfe or Goldstein line-search schemes to solve nonlinear least squares problems (NLSP), especially for the underdetermined case. Under a local error bound condition, we show that a sequence generated by the modified inexact LMM converges to a solution superlinearly and even quadratically for some special parameters, which improves the corresponding results of the classical inexact LMM in Dan et al. (Optim Methods Softw 17:605–626, 2002). Furthermore, the quadratical convergence of the global version of the modified inexact LMM is also established. Finally, preliminary numerical experiments on some medium/large scale underdetermined NLSP show that our proposed algorithm outperforms the classical inexact LMM.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje