Modified inexact Levenberg–Marquardt methods for solving nonlinear least squares problems
Autor: | Jen-Chih Yao, Jifeng Bao, Carisa Kwok Wai Yu, Jinhua Wang, Yaohua Hu |
---|---|
Rok vydání: | 2019 |
Předmět: |
Quadratic growth
Sequence 021103 operations research Control and Optimization Underdetermined system Scale (ratio) Applied Mathematics 0211 other engineering and technologies 010103 numerical & computational mathematics 02 engineering and technology 01 natural sciences Levenberg–Marquardt algorithm Computational Mathematics Non-linear least squares Convergence (routing) Applied mathematics 0101 mathematics Mathematics |
Zdroj: | Computational Optimization and Applications. 74:547-582 |
ISSN: | 1573-2894 0926-6003 |
DOI: | 10.1007/s10589-019-00111-y |
Popis: | In the present paper, we propose a modified inexact Levenberg–Marquardt method (LMM) and its global version by virtue of Armijo, Wolfe or Goldstein line-search schemes to solve nonlinear least squares problems (NLSP), especially for the underdetermined case. Under a local error bound condition, we show that a sequence generated by the modified inexact LMM converges to a solution superlinearly and even quadratically for some special parameters, which improves the corresponding results of the classical inexact LMM in Dan et al. (Optim Methods Softw 17:605–626, 2002). Furthermore, the quadratical convergence of the global version of the modified inexact LMM is also established. Finally, preliminary numerical experiments on some medium/large scale underdetermined NLSP show that our proposed algorithm outperforms the classical inexact LMM. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |