On mean sensitive tuples

Autor: Jie Li, Tao Yu
Rok vydání: 2021
Předmět:
Zdroj: Journal of Differential Equations. 297:175-200
ISSN: 0022-0396
Popis: In this paper we introduce and study several mean forms of sensitive tuples. It is shown that the topological or measure-theoretical entropy tuples are correspondingly mean sensitive tuples under certain conditions (minimal in the topological setting or ergodic in the measure-theoretical setting). Characterizations of the question when every non-diagonal tuple is mean sensitive are presented. Among other results we show that under minimality assumption a topological dynamical system is weakly mixing if and only if every non-diagonal tuple is mean sensitive and so as a consequence every minimal weakly mixing topological dynamical system is mean n-sensitive for any integer n ≥ 2 . Moreover, the notion of weakly sensitive in the mean tuple is introduced and it turns out that this property has some special lift property. As an application we obtain that the maximal mean equicontinuous factor for any topological dynamical system can be induced by the smallest closed invariant equivalence relation containing all weakly sensitive in the mean pairs.
Databáze: OpenAIRE