Interactive effects of elevated CO2 and O3 on photosynthesis and biomass production of clonal 5-year-old Norway spruce [Picea abies (L.) Karst.] under different nitrogen nutrition and irrigation treatments
Autor: | Karl Steiner, Karl-Heinz Häberle, Hans-Dieter Payer, K. E. Rehfuess, Michael Lippert |
---|---|
Rok vydání: | 1996 |
Předmět: | |
Zdroj: | Trees. 10:382-392 |
ISSN: | 1432-2285 0931-1890 |
DOI: | 10.1007/bf02185642 |
Popis: | To study the single and combined effects of elevated carbon dioxide (CO2), ozone (O3), nitrogen nutrition, and water supply on photosynthetic gas exchange and biomass accumulation of Norway spruce, a four-factorial experiment was conducted in closed environmental chambers. Each factor was applied at two levels: (i) ambient and elevated (ambient + 200 μl 1-1) CO2, (ii) 20 and 80 nl 1-1 O3, (iii) low and high nitrogen fertilization, and (iv) a well watered and a drought treatment. Neither elevated O3 nor CO2 significantly changed stomatal conductances of spruce needles. Adverse effects of elevated O3 on photosynthetic parameters such as net assimilation rate and carboxylation efficiency occurred only when the plants were well watered and in a good nutritional status. After 6 weeks enhanced atmospheric CO2 resulted in increased net assimilation rates provided that nutrition was well balanced and plants were well watered. Acclimation processes became apparent and are interpreted as a consequence of sink regulation. While O3-effects were apparent only in biomass of 1-year-old plant material, elevated CO2 resulted in higher biomass of the buds expanding during the exposure and increased root biomass significantly. Above and below-ground biomass were strongly influenced by the water and nutrition treatments. |
Databáze: | OpenAIRE |
Externí odkaz: |