Autor: |
Clifford E. Smith, D. Scott Crocker |
Rok vydání: |
1993 |
Předmět: |
|
Zdroj: |
Volume 2: Combustion and Fuels; Oil and Gas Applications; Cycle Innovations; Heat Transfer; Electric Power; Industrial and Cogeneration; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; IGTI Scholar Award. |
DOI: |
10.1115/93-gt-129 |
Popis: |
An advanced method for dilution zone mixing in a reverse flow gas turbine combustor was numerically investigated. For long mixing lengths associated with reverse flow combustors (X/H > 2.0), pattern factor was found to be mainly driven by nozzle-to-nozzle fuel flow and/or circumferential airflow variations; conventional radially injected dilution jets could not effectively mix out circumferential non-uniformities. To enhance circumferential mixing, dilution jets were angled to produce a high circumferential (swirl) velocity component. The jets on the outer liner were angled in one direction while the jets on the inner liner were angled in the opposite direction, thus enhancing turbulent shear at the expense of jet penetration. 3-D CFD calculations were performed on a three-nozzle (90°) sector, with different fuel flow from each nozzle (90%, 100% and 110% of design fuel flow). The computations showed that the optimum configuration of angled jets reduced the pattern factor by 60% compared to an existing conventional dilution hole configuration. The radial average temperature profile was adequately controlled by the inner-to-outer liner dilution flow split. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|