Effect of source and amount of energy and rate of growth in the growing phase on performance and carcass characteristics of early- and normal-weaned steers1

Autor: M. J. Cecava, Henry N. Zerby, Steven Christopher Loerch, F. L. Fluharty, Jon P Schoonmaker
Rok vydání: 2004
Předmět:
Zdroj: Journal of Animal Science. 82:273-282
ISSN: 1525-3163
0021-8812
Popis: One hundred eighty-four Angus x Simmental steers (initial BW 161.7 +/- 3.4 kg) were used to determine whether different sources and amounts of energy in the growing phase could extend the growth curve and maintain high amounts of intramuscular fat deposition in early-weaned steers. Steers were allotted by source, age, and BW to one of four growing-phase (119 to 259 d of age) regimens. For three regimens, steers were weaned at 119 d of age and either 1) fed (DM basis) a 50% grain diet ad libitum (ALC); 2) limit-fed a 70% grain diet to achieve a gain of 0.8 kg/d from 119 to 192 d of age, and 1.2 kg/d from 193 to 259 d of age (LFC); or 3) fed a 60% haylage diet ad libitum from 119 to 192 d of age, and a 25% haylage diet ad libitum from 193 to 259 d of age (ALF). For the fourth regimen, steers were normal-weaned at 204 d of age and fed a silage diet from 205 to 259 d of age (NW). From 260 d of age to slaughter, all steers consumed a 70% grain (DM basis) diet. Limit-fed and ALF steers spent the most, and NW the least amount of time (P 0.20) yield grade. Marbling score did not differ (P > 0.35), but laboratory analysis revealed that ALC steers had the lowest percentage of fat (P < 0.02) in the longissimus muscle. Shear force was greatest (P < 0.08) for steaks from ALC and LFC steers, and least for steaks from ALF and NW steers. Feeding steers the ALC diet from 119 to 260 d of age hastened physiological maturity, decreased marbling scores, and decreased muscle tenderness compared with forage feeding (ALF, NW). Limit-feeding a high-grain diet also hastened physiological maturity and decreased muscle tenderness but did not decrease marbling scores. Source and amount of energy affected partitioning of fat deposition.
Databáze: OpenAIRE