Survey on Fake News or Truth - Rumours Detection using Machine Learning

Autor: Rohit Dhamne, Vishal Agale, T. Bhaskar, Leena Gaikwad, Kalyani Deore
Rok vydání: 2021
Předmět:
Zdroj: Journal of Information Technology and Sciences. 7
ISSN: 2581-849X
DOI: 10.46610/joits.2021.v07i03.003
Popis: This study is to help readers to understand detection of fake news using machine learning. The main purpose of the planned system is to build an application which identifies fake news stories from a bunch of news stories to make people aware of fake news rumours. With the help of machine learning algorithms, we can detect and separate out the fake news. Nowadays, it is become harder to identify the original source of news stories, like looking for a needle in a haystack. In the modern world, news is a kind of communication that keeps us up to date on the latest events, topics, and people in the wider globe. A society relies on news for a variety of reasons, the most important of which is informing its members about events taking on in and around them that might influence them. Oral and traditional media, as well as digital communication methods, altered videos, memes, unconfirmed marketing, and social media have all contributed to the spread of rumors. As nowadays many people use social media in many cases people get wrong and misleading information and people share those stories without verifying whether it is real or fake news stories. Spreading false information on social media has become a major problem these days. That is why we need a system that can tell us whether something is false news or not. Applications are: 1. Fake news may be detected on social media using this approach. 2. The system can be used to help news channels to broadcast only real and classified news. 3. Users can easily detect and eliminate fake articles that contain misinformation intended to mislead readers.
Databáze: OpenAIRE