Remarks on the parametrized symbol calculus
Autor: | Michio Kinoshita |
---|---|
Rok vydání: | 1984 |
Předmět: | |
Zdroj: | Proceedings of the American Mathematical Society. 92:190-192 |
ISSN: | 1088-6826 0002-9939 |
DOI: | 10.1090/s0002-9939-1984-0754700-5 |
Popis: | In his paper, L. Hörmander has used the Weyl calculus to study the Fourier integral operator theory. In the present paper, the author considers the correspondences W τ {W_\tau } , τ ∈ R \tau \in R ( R R is the set of the real numbers), which mean the standard correspondence of symbol and operator if τ = 0 \tau = 0 , and the correspondence of Weyl type if τ = 1 / 2 \tau = 1/2 , and shows the explicit asymptotic formula which describes the deviation of W σ ( W τ ) − 1 {W_\sigma }{\left ( {{W_\tau }} \right )^{ - 1}} from the automorphisms as Lie algebra, and makes some remarks on the above formula. |
Databáze: | OpenAIRE |
Externí odkaz: |