Watershed Suspended Sediment Supply and Potential Impacts of Dam Removals for an Estuary
Autor: | Brian Yellen, Jonathan D. Woodruff, David K. Ralston |
---|---|
Rok vydání: | 2021 |
Předmět: |
Hydrology
geography Watershed geography.geographical_feature_category 010504 meteorology & atmospheric sciences Ecology Watershed area 0208 environmental biotechnology Dam removal Sediment Estuary 02 engineering and technology Aquatic Science 01 natural sciences 020801 environmental engineering Current (stream) Settling Tributary Environmental science Ecology Evolution Behavior and Systematics 0105 earth and related environmental sciences |
Zdroj: | Estuaries and Coasts. 44:1195-1215 |
ISSN: | 1559-2731 1559-2723 |
Popis: | Observations and modeling are used to assess potential impacts of sediment releases due to dam removals on the Hudson River estuary. Watershed sediment loads are calculated based on sediment-discharge rating curves for gauges covering 80% of the watershed area. The annual average sediment load to the estuary is 1.2 Mt, of which about 0.6 Mt comes from side tributaries. Sediment yield varies inversely with watershed area, with regional trends that are consistent with substrate erodibility. Geophysical and sedimentological surveys in seven subwatersheds of the Lower Hudson were conducted to estimate the mass and composition of sediment trapped behind dams. Impoundments were classified as (1) active sediment traps, (2) run-of-river sites not actively trapping sediment, and (3) dammed natural lakes and spring-fed ponds. Based on this categorization and impoundment attributes from a dam inventory database, the total mass of impounded sediment in the Lower Hudson watershed is estimated as 4.9 ± 1.9 Mt. This represents about 4 years of annual watershed supply, which is small compared with some individual dam removals and is not practically available given current dam removal rates. More than half of dams impound drainage areas less than 1 km2, and play little role in downstream sediment supply. In modeling of a simulated dam removal, suspended sediment in the estuary increases modestly near the source during discharge events, but otherwise effects on suspended sediment are minimal. Fine-grained sediment deposits broadly along the estuary and coarser sediment deposits near the source, with transport distance inversely related to settling velocity. |
Databáze: | OpenAIRE |
Externí odkaz: |