Optimizing Matrix Multiplication on Intel® Xeon Phi TH x200 Architecture

Autor: Murat Efe Guney, Kazushige Goto, Shane Story, Louise Huot, Arthur Mitrano, Sarah Knepper, Timothy B. Costa
Rok vydání: 2017
Předmět:
Zdroj: ARITH
DOI: 10.1109/arith.2017.19
Popis: Matrix multiplication is ubiquitous in scientific computing. From computational science to machine learning, a large and diverse set of applications rely on the performance of general matrix-matrix multiplication (GEMM) subroutines. The Intel® Math Kernel Library(R) provides highly optimized GEMM subroutines that take full advantage of the available parallelism and vectorization in both Intel® Xeon® and Intel® Xeon Phi(TM) processors. In this paper we discuss the optimization of GEMM subroutines for the Intel® Xeon Phi(TM) x200 (code-named Knights Landing).
Databáze: OpenAIRE