Popis: |
Pulse stability is crucial to the effective propagation of information in a soliton-based optical communication system. It is shown in this paper that pulses in optical fibers, for which attenuation is compensated by phase-sensitive amplifiers, are stable over a large range of parameter values. A fourth-order nonlinear diffusion model due to Kutz and co-workers is used. The stability proof invokes a number of mathematical techniques, including the Evans function and Grillakis' functional analytic approach. |