Optimal control and well-posedness for a free boundary problem 1

Autor: Thomas I. Seidman
Rok vydání: 2020
Předmět:
DOI: 10.1201/9781003072201-31
Popis: We consider, in radial geometry, a ‘crystal grain’ of some substance (radius 0 < R = R(t) < L; concentration normalized to 1) surrounded by a dilute solution with concentration u = u(t, r) in the ‘annulus’ R < |x| = r < L. We consider a fixed time interval (0, T) and set Q := {(t,x) : 0 < t < T;R(t) < |x| = r < L}. The underlying model involves diffusion 2 in the solution with the concentration satisfying the conservation equation (1.1) u ˙ = Δ u = r 1 − d ( r d − 1 u r ) r in Q https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003072201/347a7398-c358-4f58-afd1-f2a92f360652/content/eq1031.tif"/>
Databáze: OpenAIRE