Organic matter matters - The imaginary conductivity of sediments rich in solid organic carbon

Autor: Cora Strobel, Manuel Dörrich, Olaf A. Cirpka, Johan A. Huisman, Adrian Mellage
Rok vydání: 2023
ISSN: 1873-0604
DOI: 10.5194/egusphere-egu23-1838
Popis: Solid organic matter (SOM) is an important component of natural sediments and plays a crucial role in providing substrate for microbial reactions and the degradation of contaminants in soil and groundwater. Knowledge about its distribution in the subsurface is crucial for the delineation of potential hotspots of microbial activity. The subsurface is, however, difficult to access, limiting our ability to reliably delineate the spatially heterogeneous distribution of SOM. Recently, the geophysical method induced polarization (IP) has been shown to be a potentially promising mapping tool, able to detect the presence of SOM. However, the mechanisms controlling IP signals in the presence of SOM are not (yet) well understood, with a handful of studies highlighting inconclusive results (Katona et al., 2021; Mellage et al., 2022; Ponziani et al., 2012; Schwartz & Furman, 2014). Moreover, a non-negligible contribution of polarization from the organic matrix can yield signals that may cause misinterpretation of other petro-physical relationships in unconsolidated sediments.In this study, we measured the spectral IP (SIP) response of aquifer sediment cores (2 – 8 m depth) collected from an alluvial floodplain aquifer in southwest Germany. The total organic carbon (TOC) content in the cores and the cation exchange capacity (CEC) exhibit a positive correlation with the magnitude of polarization (i.e. imaginary conductivity). In addition, strong differences in the frequency dependence of the IP measurements as a function of TOC fraction were observed for the otherwise calcareous matrix devoid of other strongly polarizing mineral phases (e.g. pyrite or clay minerals). While the CEC at the site is strongly dominated by the amount of SOM, polarization is more strongly linked to SOM than CEC. We hypothesize that the weaker correlation between SOM and CEC highlights the contribution of poorly understood charge storage mechanisms within the polydisperse organic matrix that differ from polarization at mineral surfaces. Ongoing experiments with artificial soil mixtures of calcitic sand and varying fractions of peat, under controlled conditions (i.e. constant electrical conductivity of the pore fluid), will help to shed light on the controls behind our field-derived relationships. We expect that our combined field and laboratory investigations will provide insights into the petro-, or rather, organo-physical relationship between SOM and the imaginary conductivity, and thus contribute to a conceptualization of the underlying polarization mechanisms in organic matrices. ReferencesKatona, T., Gilfedder, B. S., Frei, S., Bücker, M., & Flores Orozco, A. (2021). High-resolution induced polarization imaging of biogeochemical carbon-turnover hot spots in a peatland. Biogeosciences, 18(13), 4039–4058.Mellage, A., Zakai, G., Efrati, B., Pagel, H., & Schwartz, N. (2022). Paraquat sorption- and organic matter-induced modifications of soil spectral induced polarization (SIP) signals. Geophysical Journal International, 229(2), 1422–1433. https://doi.org/10.1093/gji/ggab531Ponziani, M., Slob, E. C., Vanhala, H., & Ngan-Tillard, D. (2012). Influence of physical and chemical properties on the low-frequency complex conductivity of peat. Near Surface Geophysics, 10(6), 491–501. https://doi.org/10.3997/1873-0604.2011037Schwartz, N., & Furman, A. (2014). On the spectral induced polarization signature of soil organic matter. Geophysical Journal International, 200(1), 589–595. https://doi.org/10.1093/gji/ggu410
Databáze: OpenAIRE