On the alienation of the exponential Cauchy equation and the Hosszú equation

Autor: Gyula Maksa, Maciej Sablik
Rok vydání: 2015
Předmět:
Zdroj: Aequationes mathematicae. 90:57-66
ISSN: 1420-8903
0001-9054
DOI: 10.1007/s00010-015-0358-y
Popis: In this paper, we give all the solutions \({g,h:\mathbb{R}\to\mathbb{R}}\) (the reals) of the functional equation $$g(x)g(y)-g(x+y)=h(x+y-xy)-h(x)-h(y)+h(xy) \quad(x,y\in\mathbb{R}),$$ supposing additionally that h is continuous. This result is in connection with the alienation of the exponential Cauchy equation g(x + y) = g(x)g(y) and the Hosszu equation h(x + y−xy) + h(xy) = h(x) + h(y), namely it turns out that these equations are alien provided that h is continuous.
Databáze: OpenAIRE