Oscillation of first-order differential equations with several non-monotone retarded arguments
Autor: | Ioannis P. Stavroulakis, Gizem S. Oztepe, Huseyin Bereketoglu, Fatma Karakoç |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Georgian Mathematical Journal. 27:341-350 |
ISSN: | 1572-9176 1072-947X |
DOI: | 10.1515/gmj-2019-2055 |
Popis: | Consider the first-order linear differential equation with several non-monotone retarded arguments x ′ ( t ) + ∑ i = 1 m p i ( t ) x ( τ i ( t ) ) = 0 {x^{\prime}(t)+\sum_{i=1}^{m}p_{i}(t)x(\tau_{i}(t))=0} , t ≥ t 0 {t\geq t_{0}} , where the functions p i , τ i ∈ C ( [ t 0 , ∞ ) , ℝ + ) {p_{i},\tau_{i}\in C([t_{0},\infty),\mathbb{R}^{+})} , for every i = 1 , 2 , … , m {i=1,2,\ldots,m} , τ i ( t ) ≤ t {\tau_{i}(t)\leq t} for t ≥ t 0 {t\geq t_{0}} and lim t → ∞ τ i ( t ) = ∞ {\lim_{t\to\infty}\tau_{i}(t)=\infty} . New oscillation criteria which essentially improve the known results in the literature are established. An example illustrating the results is given. |
Databáze: | OpenAIRE |
Externí odkaz: |