Notes on 'A integrable lattice hierarchy based on Suris system: N-fold Darboux transformation and conservation laws' [Nonlinear. Dyn. (2018) 91:625–639]
Autor: | Xi-Xiang Xu, Rong-Wu Lu |
---|---|
Rok vydání: | 2019 |
Předmět: |
Conservation law
Integrable system High Energy Physics::Lattice Applied Mathematics Mechanical Engineering Trace identity Aerospace Engineering Ocean Engineering 01 natural sciences Nonlinear system Nonlinear Sciences::Exactly Solvable and Integrable Systems Control and Systems Engineering Hamiltonian structure Lattice (order) 0103 physical sciences Electrical and Electronic Engineering 010301 acoustics Mathematics Mathematical physics |
Zdroj: | Nonlinear Dynamics. 98:1929-1934 |
ISSN: | 1573-269X 0924-090X |
DOI: | 10.1007/s11071-019-05298-7 |
Popis: | We point out that the Hamiltonian structure of the integrable lattice hierarchy in “A integrable lattice hierarchy based on Suris system: N-fold Darboux transformation and conservation laws” [Nonlinear. Dyn. (2018) 91:625–639] is not correct. Then, we establish a correct Hamiltonian structure by the trace identity. Further, we also prove that the integrable lattice hierarchy has bi-Hamiltonian structure. Thus, the Liouville integrability of the integrable lattice hierarchy is obtained. |
Databáze: | OpenAIRE |
Externí odkaz: |