Autor: |
S. Net, L. Nieto-Gligorovski, S. Gligorovski, H. Wortham |
Rok vydání: |
2009 |
DOI: |
10.5194/acpd-9-21647-2009 |
Popis: |
In this work we have quantitatively measured the degradation of 4-phenoxyphenol adsorbed on silica particles following oxidative processing by gas-phase ozone. This was performed under dark conditions and in presence of 4-carboxybenzophenone under simulated sunlight irradiation of the particles surface. At mixing ratio of 60 ppb which corresponds to strongly ozone polluted areas, the first order decay of 4-phenoxyphenol is k1=9.95×10−6 s−1. At very high ozone mixing ratio of 6 ppm the first order rate constants for 4-phenoxyphenol degradation were the following: k1=2.86×10−5 s−1 under dark conditions and k1=5.58×10−5 s−1 in presence of photosensitizer (4-carboxybenzophenone) under light illumination of the particles surface. In both cases the experimental data do follow the modified Langmuir-Hinshelwood equation for surface reactions. Langmuir-Hinshelwood and Langmuir-Rideal mechanisms are also discussed along with the experimental results. Most importantly, the quantities of the oligomers such as 2-(4-Phenoxyphenoxy)-4-phenoxyphenol and 4-[4-(4-Phenoxyphenoxy)phenoxy]phenol formed during the heterogeneous ozonolysis of adsorbed 4-phenoxyphenol were much higher under solar light irradiation of the surface in comparison to the dark conditions. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|