Popis: |
Background: A major goal of restorative dentistry is the maintenance of a marginal seal over a long period. One of the main problems in adhesive restorations is the lack of suitable adhesion to the tooth structure and microleakage between the tooth and the fi lling material. This seal can be affected by various factors, including adhesive bonding to the tooth structure, linear coeffi cient of thermal expansion, curing shrinkage, and water sorption. Longevity and stability of the treatment are the most important factors in the success rate. Providing chemical bonding between the filling material and the enamel or dentin tissue is another concern Aim: The purpose of this study was to assess and compare the Microleakage of Type IX Glass Ionomer Cement and Nano Ionomer Cement in Class V Cavities prepared by Er-YAG Laser and Conventional Bur Method. Objectives: This study compared the microleakage of Type IX Glass Ionomer Cement and Nano Ionomer Cement and Nano Ionomer Cement in Class V preparations done by Er-YAG Laser and Conventional Bur Method. Materials and Methods: Forty-four multirooted freshly extracted primary second molars were taken. Class V cavities were prepared on the buccal surface of each tooth. The cavity was standardized in the following dimensions: mesiodistal length of the cavity: 3.0 mm, occlusocervical width: 2.0 mm, and depth: 1.5 mm. The teeth were randomly divided into four groups. Three thousand cycles of thermocycling was used in this study to simulate oral conditions. Results: The microleakage of restorations was evaluated by measuring the dye penetration (1% Methylene Blue) under a stereomicroscope at x10 magnification at the lab, along with the image analysis software for the maximal dye penetration from the enamel margins. The value of the sections of the tooth was calculated in mm and subjected to statistical analysis.The comparison of the 4 experimental groups and the control group for apical microleakage was done using SPSS Software. Analysis of variance (ANOVA) and Post-HOC tests was performed. Conclusion: The results of the present study showed that nano-fi lled resin-modifi ed glass ionomer is more advantageous than high-viscosity glass ionomers from the perspective of effective marginal sealing in Class V cavities, irrespective of the mode of cavity preparation. |