On Brennan's Conjecture for a Special Class of Functions
Autor: | I. P. Kayumov |
---|---|
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | Mathematical Notes. 78:498-502 |
ISSN: | 1573-8876 0001-4346 |
DOI: | 10.1007/s11006-005-0149-1 |
Popis: | In this paper, we prove Brennan's conjecture for conformal mappings f of the disk {z : | z| < 1} assuming that the Taylor coefficients of the function log(zf′(z)/f(z)) at zero are nonnegative. We also obtain inequalities for the integral means over the circle |z| = r of the squared modulus of the function zf′(z)/f(z). |
Databáze: | OpenAIRE |
Externí odkaz: |