On Brennan's Conjecture for a Special Class of Functions

Autor: I. P. Kayumov
Rok vydání: 2005
Předmět:
Zdroj: Mathematical Notes. 78:498-502
ISSN: 1573-8876
0001-4346
DOI: 10.1007/s11006-005-0149-1
Popis: In this paper, we prove Brennan's conjecture for conformal mappings f of the disk {z : | z| < 1} assuming that the Taylor coefficients of the function log(zf′(z)/f(z)) at zero are nonnegative. We also obtain inequalities for the integral means over the circle |z| = r of the squared modulus of the function zf′(z)/f(z).
Databáze: OpenAIRE