Generalized Picard—Fuchs Operators From Whitham Hierarchy in $${\mathcal N} = 2$$ Supersymmetric Gauge Theory with Massless Hypermultiplets
Autor: | Jialiang Dai |
---|---|
Rok vydání: | 2020 |
Předmět: |
Instanton
Holomorphic function Statistical and Nonlinear Physics Picard–Fuchs equation High Energy Physics::Theory Mathematics::Algebraic Geometry Euler operator Gauge group Supersymmetric gauge theory Mathematics::Symplectic Geometry Hyperelliptic curve Mathematical Physics Mathematics Meromorphic function Mathematical physics |
Zdroj: | Theoretical and Mathematical Physics. 202:150-164 |
ISSN: | 1573-9333 0040-5779 |
DOI: | 10.1134/s0040577920020026 |
Popis: | Using the Whitham hierarchy, we obtain the Picard—Fuchs equations in$${\mathcal N} = 2$$supersymmetric Yang—Mills theory for a classical gauge group with Nfmassless hypermultiplets. In the general case for Nf ≠ 0, there are at least r−2 Picard—Fuchs equations that can be computed exactly from the commutation relations of the meromorphic differentials defined up to a linear combination of holomorphic differentials on the Seiberg—Witten hyperelliptic curve. Using Euler operator techniques, we study the Picard—Fuchs equations, including instanton corrections. Moreover, using symbolic computer calculations, we can obtain a complete set of Picard—Fuchs equations. |
Databáze: | OpenAIRE |
Externí odkaz: |