Pointwise estimates via parabolic potentials for a class of doubly nonlinear parabolic equations with measure data
Autor: | Stefan Sturm |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | manuscripta mathematica. 157:295-322 |
ISSN: | 1432-1785 0025-2611 |
DOI: | 10.1007/s00229-018-1014-3 |
Popis: | On a cylindrical domain $$E_T$$ , we consider doubly nonlinear parabolic equations, whose prototype is $$\partial _t u - \mathrm{div}(|u|^{m-1}|Du|^{p-2}Du) = \mu ,$$ where $$\mu $$ is a non-negative Radon measure having finite total mass $$\mu (E_T)$$ . The central objective is to establish pointwise estimates for weak solutions in terms of nonlinear parabolic potentials in the doubly degenerate case $$(p\ge 2, m>1)$$ . Moreover, we will prove the sharpness of the estimates by giving an optimal Lorentz space criterion regarding the local uniform boundedness of weak solutions and by comparing them to the decay of the Barenblatt solution. |
Databáze: | OpenAIRE |
Externí odkaz: |