Estimates concerned with Hankel determinant for M(α) class

Autor: Selin Aydinoğlu, Nafi Örnek
Rok vydání: 2022
Předmět:
Zdroj: Filomat. 36:3679-3688
ISSN: 2406-0933
0354-5180
DOI: 10.2298/fil2211679a
Popis: In this paper, we give an upper bound of Hankel determinant of (H2(1)) for the classes of M(?), ? ? C. Also, for M(?), we obtain a sharp estimate for the classical Fekete-Szeg? inequality. That is, we will get a sharp upper bound for the Hankel determinant H2(1) = c3 ? c22. Moreover, in a class of analytic functions on the unit disc, assuming the existence of angular limit on the boundary point, the estimations below of the modulus of angular derivative have been obtained.
Databáze: OpenAIRE