Popis: |
A review on optimization of adhesively bonded spar-wingskin joint (SWJ) of laminated fiber reinforced polymer (FRP) composites subjected to pull-off load is presented in this article using three-dimensional finite element analysis. Von Mises stress components have been computed across the width of joint at different interfaces viz. load coupler-spar, and load coupler-wingskin interfaces. Further, the weight of SWJ structure is considered as the objective function which needs to be minimized for optimization. In the first step, the material and lamination scheme of the FRP composite materials used for SWJ are optimized, and, in the second step, the geometrical parameters have been optimized on the basis of minimum von Mises stress and weight. Further, the effects of the material, lamination scheme, and geometrical parameters on the von Mises stress and weight have been validated using the Analysis of Variance (ANOVA) approach as prescribed by the Taguchi method. The results show that the material and spar thickness are the most significant factors influencing von Mises stress. The weight analysis reveals that there is a significant effect of change in material and wingskin thickness on SWJ performance. Suitable design recommendations have been made for SWJ in terms of material, lamination scheme and geometrical parameters. |