Low-threshold lasing in a plasmonic laser using nanoplate InGaN/GaN

Autor: Tao Tao, Bin Liu, Junjun Xue, Ting Zhi, Zhikuo Tao, Xiaoyan Liu, Jin Wang, Yi Li, Zili Xie
Rok vydání: 2021
Předmět:
Zdroj: Journal of Semiconductors. 42:122803
ISSN: 2058-6140
1674-4926
DOI: 10.1088/1674-4926/42/12/122803
Popis: Plasmonic nanolaser as a new type of ultra-small laser, has gain wide interests due to its breaking diffraction limit of light and fast carrier dynamics characters. Normally, the main problem that need to be solved for plasmonic nanolaser is high loss induced by optical and ohmic losses, which leads to the low quality factor. In this work, InGaN/GaN nanoplate plasmonic nanolaser with large interface area were designed and fabricated, where the overlap between SPs and excitons can be enhanced. The lasing threshold is calculated to be ~6.36 kW/cm2, where the full width at half maximum (FWHM) drops from 27 to 4 nm. And the fast decay time at 502 nm (sharp peak of stimulated lasing) is estimated to be 0.42 ns. Enhanced lasing characters are mainly attributed to the strong confinement of electromagnetic wave in the low refractive index material, which improve the near field coupling between SPs and excitons. Such plasmonic laser should be useful in data storage applications, biological application, light communication, especially for optoelectronic devices integrated into a system on a chip.
Databáze: OpenAIRE