On the bivariate Mersenne Lucas polynomials and their properties
Autor: | Nabiha Saba, Ali Boussayoud |
---|---|
Rok vydání: | 2021 |
Předmět: |
Recurrence relation
Mathematics::General Mathematics Mathematics::Number Theory General Mathematics Applied Mathematics Mathematics::History and Overview Mersenne prime Generating function General Physics and Astronomy Statistical and Nonlinear Physics Bivariate analysis Type (model theory) 01 natural sciences Statistics::Computation 010305 fluids & plasmas Symmetric function Combinatorics Bivariate polynomials Identity (mathematics) 0103 physical sciences Computer Science::Symbolic Computation 010301 acoustics Mathematics |
Zdroj: | Chaos, Solitons & Fractals. 146:110899 |
ISSN: | 0960-0779 |
DOI: | 10.1016/j.chaos.2021.110899 |
Popis: | The main aim of this paper is to introduce new concept of bivariate Mersenne Lucas polynomials { m n ( x , y ) } n = 0 ∞ , we first give the recurrence relation of them. We then obtain Binet’s formula, generating function, Catalan’s identity and Cassini’s identity for this type of polynomials. After that, we give the symmetric function, explicit formula and d’Ocagne’s identity of bivariate Mersenne and bivariate Mersenne Lucas polynomials. By using the Binet’s formula we obtain some well-known identities of these bivariate polynomials. Also, some summation formulas of bivariate Mersenne and bivariate Mersenne Lucas polynomials are investigated. |
Databáze: | OpenAIRE |
Externí odkaz: |