Extended non-stationary chimera-like region in a network of non-identical coupled Van der Pol’s oscillators
Autor: | Hamed Azarnoush, Sajad Jafari, Artur Dabrowski, Haikong Lu, Fatemeh Parastesh |
---|---|
Rok vydání: | 2020 |
Předmět: |
Physics
Van der Pol oscillator fungi General Physics and Astronomy Nonlinear Sciences::Cellular Automata and Lattice Gases 01 natural sciences 010305 fluids & plasmas Chimera (genetics) Nonlinear Sciences::Adaptation and Self-Organizing Systems 0103 physical sciences General Materials Science Statistical physics Physical and Theoretical Chemistry 010306 general physics Nonlinear Sciences::Pattern Formation and Solitons Phase diagram |
Zdroj: | The European Physical Journal Special Topics. 229:2239-2247 |
ISSN: | 1951-6401 1951-6355 |
DOI: | 10.1140/epjst/e2020-000002-0 |
Popis: | Chimera states are peculiar spatiotemporal patterns of coupled oscillators composed of coherent and incoherent groups. In this paper, we study a network of non-identical coupled Van der Pol’s oscillators and investigate the robustness of the chimera states against the oscillators frequency mismatches. The dynamical behaviors of the network are obtained for various coupling strengths and ranges, in different inhomogeneity levels, and the phase diagrams are presented. It is observed that the parameter inhomogeneity leads to the occurrence of synchronization in higher coupling strengths and expansion of the chimera region. In contrast to the identical network, in the non-identical network, a great deal of the chimera region belongs to the non-stationary chimera. |
Databáze: | OpenAIRE |
Externí odkaz: |