A Theorem About Maximal Cohen–Macaulay Modules

Autor: Thomas Polstra
Rok vydání: 2020
Předmět:
Zdroj: International Mathematics Research Notices. 2022:2086-2094
ISSN: 1687-0247
1073-7928
DOI: 10.1093/imrn/rnaa154
Popis: It is shown that for any local strongly $F$-regular ring there exists natural number $e_0$ so that if $M$ is any finitely generated maximal Cohen–Macaulay module, then the pushforward of $M$ under the $e_0$th iterate of the Frobenius endomorphism contains a free summand. Consequently, the torsion subgroup of the divisor class group of a local strongly $F$-regular ring is finite.
Databáze: OpenAIRE