A Theorem About Maximal Cohen–Macaulay Modules
Autor: | Thomas Polstra |
---|---|
Rok vydání: | 2020 |
Předmět: |
Class (set theory)
Ring (mathematics) Pure mathematics Torsion subgroup Mathematics::Commutative Algebra Group (mathematics) General Mathematics 010102 general mathematics Pushforward (homology) Natural number Divisor (algebraic geometry) 01 natural sciences 0103 physical sciences Frobenius endomorphism 010307 mathematical physics 0101 mathematics Mathematics |
Zdroj: | International Mathematics Research Notices. 2022:2086-2094 |
ISSN: | 1687-0247 1073-7928 |
DOI: | 10.1093/imrn/rnaa154 |
Popis: | It is shown that for any local strongly $F$-regular ring there exists natural number $e_0$ so that if $M$ is any finitely generated maximal Cohen–Macaulay module, then the pushforward of $M$ under the $e_0$th iterate of the Frobenius endomorphism contains a free summand. Consequently, the torsion subgroup of the divisor class group of a local strongly $F$-regular ring is finite. |
Databáze: | OpenAIRE |
Externí odkaz: |