On a question of Hartshorne
Autor: | Kamal Bahmanpour |
---|---|
Rok vydání: | 2020 |
Předmět: |
Ring (mathematics)
Noetherian ring Zariski topology Mathematics::Commutative Algebra Applied Mathematics General Mathematics 010102 general mathematics 05 social sciences Minimal prime ideal Dimension (graph theory) Local ring 01 natural sciences Combinatorics Mathematics::Quantum Algebra 0502 economics and business Ideal (ring theory) 0101 mathematics Abelian group 050203 business & management Mathematics |
Zdroj: | Collectanea Mathematica. 72:527-568 |
ISSN: | 2038-4815 0010-0757 |
DOI: | 10.1007/s13348-020-00298-y |
Popis: | Let I be an ideal of a commutative Noetherian ring R. It is shown that the R-modules $$H^i_I(M)$$ are I-cofinite, for all finitely generated R-modules M and all $$i\in {\mathbb {N}}_0$$ , if and only if the R-modules $$H^i_I(R)$$ are I-cofinite with dimension not exceeding 1, for all integers $$i\ge 2$$ ; in addition, under these equivalent conditions it is shown that, for each minimal prime ideal $${{\mathfrak {p}}}$$ over I, either $${{\text {height}}}{{\mathfrak {p}}}\le 1$$ or $$\dim R/{{\mathfrak {p}}}\le 1$$ , and the prime spectrum of the I-transform R-algebra $$D_I(R)$$ equipped with its Zariski topology is Noetherian. Also, by constructing an example we show that under the same equivalent conditions in general the ring $$D_I(R)$$ need not be Noetherian. Furthermore, in the case that R is a local ring, it is shown that the R-modules $$H^i_I(M)$$ are I-cofinite, for all finitely generated R-modules M and all $$i\in {\mathbb {N}}_0$$ , if and only if for each minimal prime ideal $${\mathfrak {P}}$$ of $${\widehat{R}}$$ , either $$\dim {\widehat{R}}/(I{\widehat{R}}+{\mathfrak {P}})\le 1$$ or $$H^i_{I{\widehat{R}}}({\widehat{R}}/{\mathfrak {P}})=0$$ , for all integers $$i\ge 2$$ . Finally, it is shown that if R is a semi-local ring and the R-modules $$H^i_I(M)$$ are I-cofinite, for all finitely generated R-modules M and all $$i\in {\mathbb {N}}_0$$ , then the category of all I-cofinite modules forms an Abelian subcategory of the category of all R-modules. |
Databáze: | OpenAIRE |
Externí odkaz: |