A Hilbert Module Approach to the Haagerup Property
Autor: | Zhe Dong, Zhong Jin Ruan |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Integral Equations and Operator Theory. 73:431-454 |
ISSN: | 1420-8989 0378-620X |
DOI: | 10.1007/s00020-012-1979-3 |
Popis: | We develop a Hilbert module version of the Haagerup property for general C*-algebras \({{\mathcal{A} \subseteq \mathcal{B}}}\) . We show that if \({\alpha : \Gamma \curvearrowright \mathcal{A}}\) is an action of a countable discrete group Γ on a unital C*-algebra \({\mathcal{A}}\) , then the reduced C*-algebra crossed product \({\Gamma \ltimes _{\alpha, r} \mathcal{A}}\) has the Hilbert \({\mathcal{A}}\) -module Haagerup property if and only if the action α has the Haagerup property. We are particularly interested in the case when \({\mathcal{A} = C(X)}\) is a unital commutative C*-algebra. We compare the Haagerup property of such an action \({\alpha: \Gamma \curvearrowright C(X)}\) with the two special cases when (1) Γ has the Haagerup property and (2) Γ is coarsely embeddable into a Hilbert space. We also prove a contractive Schur mutiplier characterization for groups coarsely embeddable into a Hilbert space, and a uniformly bounded Schur multiplier characterization for exact groups. |
Databáze: | OpenAIRE |
Externí odkaz: |