Maximal metrizable remainders of locally compact spaces

Autor: Alexandre Karassev, Vitalij A. Chatyrko
Rok vydání: 2013
Předmět:
Zdroj: Topology and its Applications. 160:1292-1297
ISSN: 0166-8641
DOI: 10.1016/j.topol.2013.04.022
Popis: Let R con be the set of classes R ( X ) of remainders of metrizable compactifications of all locally compact noncompact connected separable metrizable spaces X . Results of Chatyrko and Karassev (2013) [4] imply that R con is ordered by inclusion. For a given locally compact noncompact connected metrizable space X we construct a zero-dimensional metrizable remainder of X which contains any other zero-dimensional element of R ( X ) . As application of this we show that R con , ordered by inclusion, is isomorphic to ω 1 + 1 .
Databáze: OpenAIRE