Error diffusion on simplices: The structure of bounded invariant tiles

Autor: Tomasz Nowicki, Roy L. Adler, Grzegorz Świrszcz, Shmuel Winograd, Charles Tresser
Rok vydání: 2018
Předmět:
Zdroj: Indagationes Mathematicae. 29:831-841
ISSN: 0019-3577
DOI: 10.1016/j.indag.2017.10.001
Popis: This is a companion paper to Adleret al. (in press, 2015). There, we proved the existence of an absorbing invariant tile for the Error Diffusion dynamics on an acute simplex when the input is constant and “ergodic” and we discuss the geometry of this tile. Under the same assumptions we prove here that said invariant tile (a fundamental set of the lattice generated by the vertices of the simplex) which is a finite union of polytopes have the property that any union of the intersections of the tile with the Voronoi regions of the vertices is a tile for a different, explicitly defined lattice.
Databáze: OpenAIRE