Bounds for the Characteristic Functions of the System of Monomials in Random Variables and of Its Trigonometric Analogue
Autor: | T. Shervashidze |
---|---|
Rok vydání: | 1997 |
Předmět: | |
Zdroj: | gmj. 4:579-584 |
ISSN: | 1572-9176 1072-947X |
Popis: | Using a multidimensional analogue of Vinogradov's inequality for a trigonometric integral, the upper bounds are constructed for the moduli of the characteristic functions both of the system of monomials in components of a random vector with an absolutely continuous distribution in and of the system (cos j 1πξ 1 . . . cos j s πξ s , 0 ≤ j 1, . . . , j s ≤ k, j 1 + . . . + j s ≥ 1), where (ξ 1, . . . , ξ s ) is uniformly distributed in [0; 1] s . |
Databáze: | OpenAIRE |
Externí odkaz: |