Effect oF β-Alanine on The Preparation of 4-Ethoxy-Cinnamic Acid

Autor: Nguyen To Hoai, Tran Thu Thuy, Tran Thi Yen Ngoc, Truong Khoi Nguyen, Nguyen Dang Nam, Nguyen Duy Hai, Cao Thi Thu Trang
Rok vydání: 2018
Předmět:
Zdroj: The Open Materials Science Journal. 12:58-67
ISSN: 1874-088X
DOI: 10.2174/1874088x01812010058
Popis: Objective:Cinnamic acid and its derivatives have a numerous potential applications in many different fields such as pharmacy, organic “building blocks”, and corrosion inhibitors.Method:It is well-known that Verley-Doebner modification is a high efficient method for the preparation of cinnamic acid derivaties, especially with the compounds containing electron-donating subtituents at para position in aromatic ring. In this paper, 4-ethoxy-cinnamic acid was synthesized according to Verley-Doebner reaction with the use of pyrine acting as catalyst and solvent. The effect of the β-alanine concentration on the conversion of the starting material of 4-ethoxy-benzaldehyde was thoroughly investigated using high performance liquid chromatography. The results showed that consuming of 8% of β-alanine would convert 100% of 4-ethoxy-benzaldehyde to 4-ethoxy-cinnamic acid.Result:The structure of the obtained 4-ethoxy-cinnamic acid was also confirmed using Fourier transform infrared spectroscopy, Raman spectroscopy, and Gas chromatography-Mass spectroscopy.Cinnamic acid and its derivatives have numerous potential applications in many different fields such as pharmacy, organic “building blocks”, and corrosion inhibitors. It is well-known that Verley-Doebner modification is a high efficient method for the preparation of cinnamic acid derivaties, especially with the compounds containing electron-donating subtituents at para position in aromatic ring. In this paper, 4-ethoxy-cinnamic acid was synthesized according to Verley-Doebner reaction with the use of pyrine acting as catalyst and solvent. The effect of the β-alanine concentration on the conversion of the starting material of 4-ethoxy-benzaldehyde was thoroughly investigated using high performance liquid chromatography. The results showed that consuming 8% of β-alanine would convert 100% of 4-ethoxy-benzaldehyde to 4-ethoxy-cinnamic acid. The structure of the obtained 4-ethoxy-cinnamic acid was also confirmed using Fourier transform infrared spectroscopy, Raman spectroscopy, and Gas chromatography-Mass spectroscopy.
Databáze: OpenAIRE