Autor: |
Olivier Thas, J. De Neve, John C. W. Rayner |
Rok vydání: |
2015 |
Předmět: |
|
Zdroj: |
Australian & New Zealand Journal of Statistics. 57:481-499 |
ISSN: |
1369-1473 |
DOI: |
10.1111/anzs.12130 |
Popis: |
In this paper we present a semiparametric test of goodness of fit which is based on the method of L-moments for the estimation of the nuisance parameters. This test is particularly useful for any distribution that has a convenient expression for its quantile function. The test proceeds by investigating equality of the first few L-moments of the true and the hypothesised distributions. We provide details and undertake simulation studies for the logistic and the generalised Pareto distributions. Although for some distributions the method of L-moments estimator is less efficient than the maximum likelihood estimator, the former method has the advantage that it may be used in semiparametric settings and that it requires weaker existence conditions. The new test is often more powerful than competitor tests for goodness of fit of the logistic and generalised Pareto distributions. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|