Scalable multimedia content analysis on parallel platforms using python

Autor: Gerald Friedland, Eric Battenberg, Penporn Koanantakool, Michael Driscoll, Ekaterina Gonina, Kurt Keutzer, Evangelos Georganas
Rok vydání: 2014
Předmět:
Zdroj: ACM Transactions on Multimedia Computing, Communications, and Applications. 10:1-22
ISSN: 1551-6865
1551-6857
DOI: 10.1145/2517151
Popis: In this new era dominated by consumer-produced media there is a high demand for web-scalable solutions to multimedia content analysis. A compelling approach to making applications scalable is to explicitly map their computation onto parallel platforms. However, developing efficient parallel implementations and fully utilizing the available resources remains a challenge due to the increased code complexity, limited portability and required low-level knowledge of the underlying hardware. In this article, we present PyCASP, a Python-based framework that automatically maps computation onto parallel platforms from Python application code to a variety of parallel platforms. PyCASP is designed using a systematic, pattern-oriented approach to offer a single software development environment for multimedia content analysis applications. Using PyCASP, applications can be prototyped in a couple hundred lines of Python code and automatically scale to modern parallel processors. Applications written with PyCASP are portable to a variety of parallel platforms and efficiently scale from a single desktop Graphics Processing Unit (GPU) to an entire cluster with a small change to application code. To illustrate our approach, we present three multimedia content analysis applications that use our framework: a state-of-the-art speaker diarization application, a content-based music recommendation system based on the Million Song Dataset, and a video event detection system for consumer-produced videos. We show that across this wide range of applications, our approach achieves the goal of automatic portability and scalability while at the same time allowing easy prototyping in a high-level language and efficient performance of low-level optimized code.
Databáze: OpenAIRE