Popis: |
Based on the micromechanics theory, Alumina-carbon refractories were regarded as resin-carbon bonded composites, including alumina, graphite and pores derived from particles packing gaps and phenolic resin pyrolysis. Graphite was regarded as isotropic spherical inclusions; particles packing gaps and phenolic resin pyrolysis pores were regarded as pore phase all together. Applying Mori-Tanaka multi-phase spherical inclusion method, firstly, elastic constants of resin-carbon phase were computed reversely by the elastic constants known alumina-carbon refractories, alumina and graphite, and then the effective elastic modulus of alumina-carbon refractories were estimated by the calculated elastic constants of resin-carbon and other raw materials. The results show that: the predicted elastic modulus by Mori-Tanaka model are higher than the experimental measurement values; resin carbon residue and pores have a great influence on effective elastic modulus of alumina-carbon refractories. |