A Module-theoretic Characterization of Algebraic Hypersurfaces

Autor: Cleto B. Miranda-Neto
Rok vydání: 2018
Předmět:
Zdroj: Canadian Mathematical Bulletin. 61:166-173
ISSN: 1496-4287
0008-4395
DOI: 10.4153/cmb-2016-099-6
Popis: In this note we prove the following surprising characterization: if X ⊂ is an (embedded, non-empty, proper) algebraic variety deûned over a field k of characteristic zero, then X is a hypersurface if and only if the module of logarithmic vector fields of X is a reflexive -module. As a consequence of this result, we derive that if is a free -module, which is shown to be equivalent to the freeness of the t-th exterior power of for some (in fact, any) t ≤ n, then necessarily X is a Saito free divisor.
Databáze: OpenAIRE