Factorable strongly p-nuclear m-homogeneous polynomials
Autor: | Ahlem Alouani, Dahmane Achour, K. Saadi, Pilar Rueda |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Algebra and Number Theory Applied Mathematics Nuclear Theory 010102 general mathematics Linear operators Characterization (mathematics) 01 natural sciences Connection (mathematics) 010101 applied mathematics Computational Mathematics Nonlinear system Linearization Homogeneous Geometry and Topology 0101 mathematics Nuclear Experiment Link (knot theory) Analysis Mathematics |
Zdroj: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 113:969-986 |
ISSN: | 1579-1505 1578-7303 |
Popis: | We characterize in terms of summabiility those homogeneous polynomials whose linearization is p-nuclear. This characterization provides a strong link between the theory of p-nuclear linear operators and the (non linear) homogeneous p-nuclear polynomials that significantly improves former approaches. The deep connection with Grothendieck-integral polynomials is also analyzed. |
Databáze: | OpenAIRE |
Externí odkaz: |