Visual numerical steering in 3D AGENT code system for advanced nuclear reactor modeling and design

Autor: Thomas Fogal, Todd Sherman, Hermilo Hernandez, J. Knezevic, Tatjana Jevremovic
Rok vydání: 2013
Předmět:
Zdroj: Annals of Nuclear Energy. 55:248-257
ISSN: 0306-4549
Popis: The AGENT simulation system is used for detailed three-dimensional modeling of neutron transport and corresponding properties of nuclear reactors of any design. Numerical solution to the neutron transport equation in the AGENT system is based on the Method of Characteristics (MOCs) and the theory of R-functions. The latter of which is used for accurately describing current and future heterogeneous lattices of reactor core configurations. The AGENT code has been extensively verified to assure a high degree of accuracy for predicting neutron three-dimensional point-wise flux spatial distributions, power peaking factors, reaction rates, and eigenvalues. In this paper, a new AGENT code feature, a computational steering, is presented. This new feature provides a novel way for using deterministic codes for fast evaluation of reactor core parameters, at no loss to accuracy. The computational steering framework as developed at the Technische Universitat Munchen is smoothly integrated into the AGENT solver. This framework allows for an arbitrary interruption of AGENT simulation, allowing the solver to restart with updated parameters. One possible use of this is to accelerate the convergence of the final values resulting in significantly reduced simulation times. Using this computational steering in the AGENT system, coarse MOC resolution parameters can initially be selected and later update them – while the simulation is actively running – into fine resolution parameters. The utility of the steering framework is demonstrated using the geometry of a research reactor at the University of Utah: this new approach provides a savings in CPU time on the order of 50%.
Databáze: OpenAIRE