Laplacian integrality in P 4 -sparse and P 4 -extendible graphs
Autor: | Renata R. Del-Vecchio, Átila Arueira Jones |
---|---|
Rok vydání: | 2018 |
Předmět: |
Discrete mathematics
Clique-sum Applied Mathematics 010103 numerical & computational mathematics 0102 computer and information sciences 01 natural sciences Modular decomposition Combinatorics Computational Mathematics Indifference graph Pathwidth 010201 computation theory & mathematics Chordal graph Cograph Split graph 0101 mathematics Graph product Mathematics |
Zdroj: | Applied Mathematics and Computation. 330:307-315 |
ISSN: | 0096-3003 |
Popis: | Let G be a simple graph and L = L ( G ) the Laplacian matrix of G. G is called L-integral if all its Laplacian eigenvalues are integer numbers. It is known that every cograph, a graph free of P4, is L-integral. The class of P4-sparse graphs and the class of P4-extendible graphs contain the cographs. It seems natural to investigate if the graphs in these classes are still L-integral. In this paper we characterized the L-integral graphs for both cases, P4-sparse graphs and P4-extendible graphs. |
Databáze: | OpenAIRE |
Externí odkaz: |