Permeabilization via the P2X 7 Purinoreceptor Reveals the Presence of a Ca 2+ -activated Cl − Conductance in the Apical Membrane of Murine Tracheal Epithelial Cells

Autor: Thomas, Emma J., Martsen, Elena, Gabriel, Sherif E., Makhlina, Mariya, Boucher, Richard C., Lethem, Mike I.
Jazyk: angličtina
Rok vydání: 2000
DOI: 10.17615/n8z0-gh70
Popis: Calcium-activated Cl(-) secretion is an important modulator of regulated ion transport in murine airway epithelium and is mediated by an unidentified Ca(2+)-stimulated Cl(-) channel. We have transfected immortalized murine tracheal epithelial cells with the cDNA encoding the permeabilizing P2X(7) purinoreceptor (P2X(7)-R) to selectively permeabilize the basolateral membrane and thereby isolate the apical membrane Ca(2+)-activated Cl(-) current. In P2X(7)-R-permeabilized cells, we have demonstrated that UTP stimulates a Cl(-) current across the apical membrane of CF and normal murine tracheal epithelial cells. The magnitude of the UTP-stimulated current was significantly greater in CF than in normal cells. Ion substitution studies demonstrated that the current exhibited a permselectivity sequence of Cl(-) > I(-) > Br(-) > gluconate(-). We have also determined a rank order of potency for putative Cl(-) channel blockers: niflumic acid > or = 5-nitro-2-(3-phenylpropylamino)benzoic acid > 4, 4'-diisothiocyanostilbene-2,2'-disulfonate > glybenclamide >> diphenlyamine-2-carboxylate, tamoxifen, and p-tetra-sulfonato-tetra-methoxy-calix[4]arene. Complete characterization of this current and the corresponding single channel properties could lead to the development of a new therapy to correct the defective airway surface liquid in cystic fibrosis patients.
Databáze: OpenAIRE