An efficient operational matrix approach for the solutions of Burgers' and fractional Burgers' equations using wavelets
Autor: | G. Swaminathan, B. Sripathy, G. Hariharan |
---|---|
Rok vydání: | 2021 |
Předmět: |
010304 chemical physics
Applied Mathematics 010102 general mathematics MathematicsofComputing_NUMERICALANALYSIS Order (ring theory) Data_CODINGANDINFORMATIONTHEORY General Chemistry 01 natural sciences Chebyshev filter Haar wavelet Nonlinear system Algebraic equation Wavelet Transformation (function) ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION 0103 physical sciences Convergence (routing) Applied mathematics 0101 mathematics Mathematics |
Zdroj: | Journal of Mathematical Chemistry. 59:554-573 |
ISSN: | 1572-8897 0259-9791 |
DOI: | 10.1007/s10910-020-01206-2 |
Popis: | In this paper, we have developed an efficient Chebyshev wavelet-Picard method for solving Burgers’ equation and time-fractional Burgers’ equation. In order to get the solution, we decompose the nonlinear PDE by Picard method and then convert into a system of algebraic equations. Convergence analysis of the proposed wavelet method is also discussed. The proposed wavelet solutions are compared with the solutions obtained by Cole-Hopf transformation and Haar wavelet method. Satisfactory agreement with HAM and analytical solution is observed. Some illustrative examples are given to demonstrate the efficiency and accuracy of the proposed wavelet method. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |