Context-aware cognitive radio using deep learning

Autor: Ahmed Selim, Christian Bluemm, Maicon Kist, Justin Tallon, André Puschmann, Luiz A. DaSilva, Francisco Paisana, Pedro Alvarez
Rok vydání: 2017
Předmět:
Zdroj: DySPAN
DOI: 10.1109/dyspan.2017.7920784
Popis: This paper describes the design, experimental assessmant and Software Defined Radio (SDR) implementation of a Secondary User (SU) link for the IEEE DySPAN Challenge 2017. The objective is to successfully discern the behavior of and coexist with a Primary User (PU), whose channel access patterns vary over time. For that end, we utilize sensing, deep learning and dynamic optimization.
Databáze: OpenAIRE