Popis: |
Coal samples from a coalbed methane exploration well in northern Zavala County, Maverick Basin, Texas, were characterized through an integrated analytical program. The well was drilled in February, 2006 and shut in after coal core desorption indicated negligible gas content. Cuttings samples from two levels in the Eocene Claiborne Group were evaluated by way of petrographic techniques and Rock–Eval pyrolysis. Core samples from the Paleocene–Eocene Indio Formation (Wilcox Group) were characterized via proximate–ultimate analysis in addition to petrography and pyrolysis. Two Indio Formation coal samples were selected for detailed evaluation via gas chromatography, and Fourier transform infrared (FTIR) and 13C CPMAS NMR spectroscopy. Samples are subbituminous rank as determined from multiple thermal maturity parameters. Elevated rank (relative to similar age coal beds elsewhere in the Gulf Coast Basin) in the study area is interpreted to be a result of stratigraphic and/or structural thickening related to Laramide compression and construction of the Sierra Madre Oriental to the southwest. Vitrinite reflectance data, along with extant data, suggest the presence of an erosional unconformity or change in regional heat flow between the Cretaceous and Tertiary sections and erosion of up to >5 km over the Cretaceous. The presence of liptinite-rich coals in the Claiborne at the well site may indicate moderately persistent or recurring coal-forming paleoenvironments, interpreted as perennially submerged peat in shallow ephemeral lakes with herbaceous and/or flotant vegetation. However, significant continuity of individual Eocene coal beds in the subsurface is not suggested. Indio Formation coal samples contain abundant telovitrinite interpreted to be preserved from arborescent, above-ground woody vegetation that developed during the middle portion of mire development in forested swamps. Other petrographic criteria suggest enhanced biological, chemical and physical degradation at the beginning and end of Indio mire development. Fluorescence spectra of sporinite and resinite are consistent and distinctly different from each other, attributed to the presence of a greater proportion of complex asphaltene and polar molecules in resinite. Gas chromatography of resinite-rich coal shows sesquiterpenoid and diterpenoid peaks in the C14–17 range, which are not present in resinite-poor coal. Quantities of extracts suggest bitumen concentration below the threshold for effective source rocks [30–50 mg hydrocarbon/g total organic carbon (HC/g TOC)]. Saturate/aromatic and pristane/phytane (Pr/Ph) ratios are different from values for nearby Tertiary-reservoired crude oil, suggesting that the Indio coals are too immature to source liquid hydrocarbons in the area. However, moderately high HI values (200–400 mg HC/g rock) may suggest some potential for naphthenic–paraffinic oil generation where buried more deeply down stratigraphic/structural dip. Extractable phenols and C20+ alkanes are suggested as possible intermediates for acetate fermentation in microbial methanogenesis which may, however, be limited by poor nutrient supply related to low rainfall and meteoric recharge rate or high local sulfate concentration. |