Copper vapor laser machining of polyimide and polymethylmethacrylate in atmospheric pressure air

Autor: Peter L. G. Ventzek, C.H. Ching, W. B. McColl, R.A. Lindley, Ronald M. Gilgenbach
Rok vydání: 1992
Předmět:
Zdroj: Journal of Applied Physics. 72:3080-3083
ISSN: 1089-7550
0021-8979
Popis: A repetitively pulsed copper vapor laser (510 and 578 nm) is used to machine an opaque polymer (polyimide‐Vespel) and a transparent polymer (polymethylmethacrylate‐Lucite). Lucite is machinable by coating the surface with an ink which is semi‐opaque to the green and yellow laser light. The repetition rate of the laser was 10 kHz with approximately 0.35 mJ/pulse and 3.5 W average power at the copper vapor laser wavelengths for a pulse width of 40 ns. The copper vapor laser thermally loads the target, generating thermal waves and sound waves in the gas which are investigated using HeNe laser beam deflection. The gas adjacent to the target is heated to steady state on the order of 100–400 s. Above the etching threshold, at approximately 10 mJ/cm2/pulse, the target is rapidly machined: 2‐mm‐diam, 2‐mm‐deep holes are drilled in 300 s in Vespel. At higher fluences of 100–150 mJ/cm2/pulse in 760 Torr of air it takes 180 s to bore through a 2‐mm‐thick disk of Vespel. The machined surfaces of the two polymers are very different. Machined Vespel samples are charred and cratered, whereas the Lucite samples show evidence of melting with little charring. The machining of polymers by visible‐light copper vapor lasers is being compared to UV photoablation by KrF excimer laser light in order to study thermal versus nonthermal etching mechanisms.
Databáze: OpenAIRE