Rigidity of higher rank abelian cocycles with values in diffeomorphism groups
Autor: | Anatole Katok, Viorel Niţică |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Zdroj: | Geometriae Dedicata. 124:109-131 |
ISSN: | 1572-9168 0046-5755 |
DOI: | 10.1007/s10711-006-9116-6 |
Popis: | We consider cocycles over certain hyperbolic \({\mathbb{R}^k}\) actions, \({k\ge 2}\) , and show rigidity properties for cocycles with values in a Lie group or a diffeomorphism group, which are close to identity on a set of generators, and are sufficiently smooth. The actions we consider are Cartan actions of \({SL(n,\mathbb{R})/\Gamma}\) or \({SL(n,\mathbb{C})/\Gamma}\) , for \({n\ge 3}\) , and Γ torsion free cocompact lattice. The results in this paper rely on a technique developed recently by D. Damjanovic and A. Katok. |
Databáze: | OpenAIRE |
Externí odkaz: |