On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator
Autor: | Jayme Vaz, E. Capelas de Oliveira, R. Figueiredo Camargo |
---|---|
Rok vydání: | 2009 |
Předmět: |
Laplace transform
Mathematics::Complex Variables Anomalous diffusion Mathematical analysis Mathematics::Classical Analysis and ODEs Statistical and Nonlinear Physics Noise (electronics) Langevin equation Mathematics::Probability Generalized langevin equation Diffusion (business) Mathematical Physics Harmonic oscillator Mathematics |
Zdroj: | Journal of Mathematical Physics. 50:123518 |
ISSN: | 1089-7658 0022-2488 |
DOI: | 10.1063/1.3269587 |
Popis: | The fractional generalized Langevin equation (FGLE) is proposed to discuss the anomalous diffusive behavior of a harmonic oscillator driven by a two-parameter Mittag–Leffler noise. The solution of this FGLE is discussed by means of the Laplace transform methodology and the kernels are presented in terms of the three-parameter Mittag–Leffler functions. Recent results associated with a generalized Langevin equation are recovered. |
Databáze: | OpenAIRE |
Externí odkaz: |