Some effectivity questions for plane Cremona transformations in the context of symmetric key cryptography
Autor: | N.I. Shepherd-Barron |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
business.industry Plane (geometry) General Mathematics Hyperbolic geometry 010102 general mathematics Context (language use) 01 natural sciences Upper and lower bounds Entropy (classical thermodynamics) Transformation (function) Quadratic equation Symmetric-key algorithm 0103 physical sciences 010307 mathematical physics 0101 mathematics business Mathematics |
Zdroj: | Proceedings of the Edinburgh Mathematical Society. 64:1-28 |
ISSN: | 1464-3839 0013-0915 |
DOI: | 10.1017/s0013091520000231 |
Popis: | An effective lower bound on the entropy of some explicit quadratic plane Cremona transformations is given. The motivation is that such transformations (Hénon maps, or Feistel ciphers) are used in symmetric key cryptography. Moreover, a hyperbolic plane Cremona transformation g is rigid, in the sense of [5], and under further explicit conditions some power of g is tight. |
Databáze: | OpenAIRE |
Externí odkaz: |