The bifurcation of homoclinic orbits from two heteroclinic orbits-a topological approach
Autor: | D. Terman, B. Deng, S. N. Chow |
---|---|
Rok vydání: | 1991 |
Předmět: |
Differential equation
Applied Mathematics Mathematical analysis Heteroclinic cycle Heteroclinic bifurcation Topology Nonlinear Sciences::Chaotic Dynamics Classical mechanics Ordinary differential equation Orbit (dynamics) Homoclinic bifurcation Heteroclinic orbit Homoclinic orbit Nonlinear Sciences::Pattern Formation and Solitons Analysis Mathematics |
Zdroj: | Applicable Analysis. 42:1057-1080 |
ISSN: | 1563-504X 0003-6811 |
DOI: | 10.1080/00036819108840047 |
Popis: | Conditions are found for a homoclinic orbit to bifurcate from a heteroclinic loop for autonomous ordinary differential equations. The results axe applied to prove the existence of traveling wave solutions of the FitzHugh-Nagumo equations and a system of reaction diffusion equations which arise as a model for a two step combustion process. |
Databáze: | OpenAIRE |
Externí odkaz: |