Optimization and Technoeconomic Analysis of Rapid Temperature Swing Adsorption Process for Carbon Capture from Coal-Fired Power Plant

Autor: Fateme Rezaei, Ying Labreche, Matthew J. Realff, Ryan P. Lively, Katherine Searcy, Yoshiaki Kawajiri, Subramanian Swernath
Rok vydání: 2015
Předmět:
DOI: 10.1016/b978-0-444-63472-6.00010-0
Popis: Greenhouse gas emissions from coal-fired power plants are expected to increase over the next 20 years as international demand for energy continues to grow. A rapid temperature swing adsorption (RTSA) process employing polymeric hollow fiber contactors loaded with sorbent particles has been demonstrated experimentally as a novel and efficient process for postcombustion CO 2 capture. One of the advantages of the process is the rapid heat and mass transfer enabled by the hollow fibers. This feature can achieve efficient heat integration by recycling spent hot and cold water. In this chapter, a dynamic optimization strategy was employed to find the optimal operating conditions of a hollow fiber RTSA process. In the optimization problem, dynamic heat integration is performed to minimize the utility cost for hot and cold water while maintaining sufficient CO 2 throughput. The optimal operation was evaluated by a detailed technoeconomic analysis for a plant capacity of 550 MW.
Databáze: OpenAIRE